Technical Interaction Design

(Autumn 2022)
KSTEINDIKU

Final Report
Chat Application

William Frost Thomsen, wilt@itu.dk
Fabian August Clement Harlang, faha@itu.dk
Georgios Rounis, gero@itu.dk

IT University of Copenhagen, Denmark
Teacher: Bjgrn Hjorth Westh

IT UNIVERSITY OF COPENHAGEN

Contents

[L__Introduction|

12

Empathy research|

2.1 User group and target group| Lo

2.2 Empathy research| o

[2.3 _Conduct empathy research|. 0 0L
P-4 Findings from our empathy research]

4.5 Prototyping]

]

Usability Test|

[5.1 Usability Test of Low-Fidelity Prototype|.

|6 Hi-Fi Prototype

7 Data Modell

Technical Implementation|

Design to App|

W NN NN [\

S Ot w W

CSIENSEES IEN SRR EEN|

13

16

17

17

17
18
19
19
20

20

24

1 Introduction

With the advent of technological improvements, web applications are now used on a large scale. For
the purpose of this course, we are going to focus on web chat applications, and in particular, we are
going to develop a chat application to be used by students and Teaching assistants in ITU. Due to
the fact that the current communication platforms for I'TU students can provoke a lot of frustration
among students that want to receive help as soon as possible and TAs that want to help students
with their questions but at the same time do it whenever they have available time, we identified
the need to develop a chat application that addresses those expectations and make communication
easier. The implementation part of the application will make use of markup language HTML, CSS
styling, and client-side programming languages using JavaScript React libraries and the technical
solution will be described in a later section. Prior to the implementation specifics, we will describe
in the following sections the design steps we followed to build a chat application that both covers
the need of ITU students and creates a seamless experience for the end user.

2 Empathy research

2.1 User group and target group

Understanding the use context is important as the success of the software highly depends on how
well it fits its environment and the use context (Parnas, 1999). As we build the project on the
chat application the focus will be to provide a channel with a user interface experience where the
users can communicate with each other and respond or react to the messages whenever necessary in
real-time. After doing a brainstorming session to pick the user group, we agreed on the students and
Teaching Assistants at the I'T University of Copenhagen. We proceeded with this selection because
there are two different user groups. On the first hand, we have students who are seeking help in their
selected courses, and on the other hand, we have TAs who wanna help them as quickly as possible
whenever they have the time to do so.

2.2 Empathy research

Empathy research helps undertake research to improve your comprehension of your users (Bjern
H. Westh, slides). We have chosen to conduct interviews with our target users defined above to
understand their needs and find out which features they consider the most desired ones for our chat
application. It is very essential before interviewing to sufficiently prepare to ensure a smooth run
and cover all the important areas in one sitting. For that reason, before the interview date, we
followed the below steps to plan our interview:

1. Brainstorm the interview questions with the members of the team project
2. Group the potential questions into areas and decide on a smooth flow

3. Polish and refine our questions as well as remove the repeated ones

2.3 Conduct empathy research

Conduct empathy research We interviewed 3 students and 2 Teaching assistants from ITU to gain
useful information for ITU chat application. The interview questions asked are listed below:

Question 1: How do you usually contact other students from ITU? (Applicable for both stu-
dents and TAs)

Question 2: How do you usually contact your TAs when you have questions? (Applicable for
students)

Question 3: What is your opinion on the current ways to communicate with your TAs? Do
you find it easy to get answers from them as fast you need them? (Applicable for students)

Question 4: What is your opinion on the current ways to communicate with students and an-
swer their questions? Do you find it easy to reply them quickly? (Applicable for TAs)

Question 5: What do you think about a central ITU chat application that students will be able
to view all available TAs per subscribed course to answer their questions? (Applicable for both
students and TAs)

2.4 Findings from our empathy research

After the interviews with both students from ITU and TAs, we managed to gain useful information
for our target users.

Regarding the students, according to their answers, they mostly use either Microsoft Teams or
Facebook messenger to contact other students and their TAs. While it is relatively easy to find
them using these apps, it is often quite hard to get fast responses to their questions, and therefore
they need to spend time find for other TAs that are available at the moment to help. This makes
them spend a lot of time texting different people till someone is ready to help. Students were quite
positive about the idea of an application that will indicate the availability of every TA to help per
subscribed course.

As for the TAs, they also find it quite frustrating the part to answer students’ questions fast only
when they have available time and very often they are stopping what they do at the moment to

reply. Lastly, both TAs were excited with the idea of an application that they will be able to set
their status as available or busy based on whether they can help at the moment or not.

3 Problem Domain

3.1 Personas

Persona one

Name: Ben Hopkins

At a glance
age: 28
location: Northwest
life stage: In relationship
occupancy: study at IT-University of Copenhagen (1st year Master)

Motivators:
Find time to spend with his friends, doing good at school and listen to his favorite 70’s Rock band
Black Sabbath

Behaviors:
Daily life concerns - Spend a lot of time studying, attending the lectures, trying to not falling behind
in semester courses and trying to find balance between I'TU and social life.

Volunteers - At Analog cafe twice per week.

Spends time with his own Rock band - He plays keyboard and participates in rehearsal with his
band before a concert.

Needs

- Social Connection

- Spend time with his beloved ones

- Take his university degree in a timely manner

Persona two

Name: Maira Lowe

At a glance
age: 26
location: Southeast

life stage: in a relationship
occupancy: Pursuing her master in IT-University of Copenhagen (2nd year, being a teacher assistant
in Introductory Programming)

Motivators:

Being helpful and appreciated for it without pushing her own needs. In addition, she would like to
gain knowledge through explaining complex topics in a way that is comprehensible to inexperienced
students.

Behaviors:
Daily life concerns - Spend a lot of time studying, likes exercising and plays handball with her friends.

Volunteers - At Scrollbar every Friday.
Spends time playing League of Legends online.

Needs

- Follow his favorite football team every Sunday
- Spend time with her boyfriend

- Take his university degree next summer

3.2 POVs
Student POV

User

Need

Insight

Student at IT-University of
Copenhagen

To get help from a Teaching
Assistant quickly

Students at ITU want to be
able to get help quickly
when they are stuck on
some assignment and be
able to know which TA is
available to help so they can
quickly reach out and
receive help.

TAs POV

User

Need

Insight

Teaching assistant at
IT-University of Copenhagen

To be able to help students
when available and able to
update status to indicate
when not available. Not
receiving help requests
whenever he has no
availabitly.

Teaching assistants would
prefer to have on platform
for conversation with
students instead of receiving
random emails or messages
in different platforms(Piazza,
LearnIT, Microsoft Outlook,
etc). It's easier to respond
instantaneously at a specific
time of the week rather than
having email piling up.

3.3 “How might we”

e How might we improve the communication between students and Teachers Assitants (TAs)?

e How might we avoid delayed and inefficient communitacion via e-mail?

e How might we create an option for students at ITU to get instantaneous help with an exer-

cise/assigment from a TAs?

e How might we ensure only avaialble TAs will be contacted by students?

e How might we create a chat applications with different rooms each representing a specific

course?

e How might we enable functionalities of attaching documents and/or sharing screens for easier

code troubleshooting or feedback?

4 Ideation Prototype

4.1 Ideation

After the definition of our problem domain in the previous step, it is now time to discover possible
solutions to the existing problem: Students at ITU need a smart and flexible way to communicate
and get help quickly only from Teaching assistants that are available at the moment to offer help
avoiding massive emails and spamming messages. In the Ideation phase, we are going to discover
and discuss the ideas which will be finally converted into solutions for our problem.

4.2 Methods - Generation

Our selected method to generate our ideas was a Brainstorming session among the three members of
our teams where we set a 30-minute time limit and each one of us noted down their personal ideas.
During the session, we tried to ensure that members stayed on topic and continued generating so-
lutions around the core problem statement without going beyond the scope of the discussion. The
most constructive part of this method was the building of each other’s ideas. Hence, an immature
idea generated by one of us later evolved into a solid one. The reason we have chosen the Brain-
storming session against other methods is that we use this method in our daily life and we are more
familiar with it when it comes to finding solutions. In addition, the open discussion, and the easy
building on others’ ideas is indeed very useful.

4.3 Methods - Selection

After we list the ideas defined during the generation phase, it is time to select those that are
considered by all the team members as the most critical ones. In order to vote for our ideas, we
used the Dot Voting method. All the ideas generated in the ideation session were written down on
individual Post-its and each member could give 4 votes in total simply using a marker to make a
dot on the ideas they like. The reason why we have chosen this method over the others is because
of its simplicity.

4.4 Our selected ideas

The ideas we finally voted for as the best to fit our problem domain are listed below:

e A chat application to enable direct communication between students and teaching assistants
will give the chance to ITU students to get help quickly from their TAs.

e Each teacher assistant should have a status in the chat application indicating whether they
are available or not.

e Students should be able to chat only with teacher assistants for the courses that they have
registered for.

e Users should be able to create groups in order to chat with multiple users.

e Students before starting the chat should be able to select the severity of their ticket through
a 4-scale with the choices Low/ Medium/ High/ Very High.

4.5 Prototyping

We decided to use sketches and wireframes for our prototyping.

Figure 1: Sketch 1. Student

Figure 2: Sketch 2. TA

We use wireframes as it offers a highly flexible solution for displaying lo-fi versions of the product
which we will develop and how it will be displayed for the user. As we are still early in the process
and are still in the process of designing the product to fit the problem domain etc, wireframing gives
us the ability to easily display some initial idea about how the interface and product might look
like, but simultaneously gives us the opportunity to easily change the design to comply with the
user feedback or if our user functionality will change later on. We decided, unlike the sketches, to
do the wireframe with the online-tool Balsamiq as we expect to update it as more functionalities
and sections come into account.

10

AWeb Page

N

e k. o) {https://studentchat.app
#-Click to select

LOGIN

ITU TA/Student CHAT APP

Figure 3: Login / Signup page

AWeb Page

COPEIIIR (Tiips://studentchatapp/courses

] @)

Select course
@ Search for course)

Software Engineeriny
2 active Teaching Assistants

Technical Interaction Design
1 active Teaching Assistant

Web Archi e and fr ks
2 active Teaching Assistants

See who's active

Figure 4: Course Overview

11

| AWeb Page

‘O 9 x {} { https://studentchat app/courses/77/ta

Select TA

Web Architecture and Framworks

John Doe
Active

Johnny Doey

_
z? g
4 E
) o
58

[}

[«

Figure 5: TA overview and availability

ITU CHAT

<3 o x G { https:/ /studentchat app/courses/77 /ta/1

] &)

John Doe

3y IWiHiom Frost
£ [Student

Hey bro, can u help me with
assignment?

John Doe
TA

] Hey ye, whats up man? |

illiam Frost
/ Student

What's answer for number 1
ion? .
queston 3-Click to select

John Doe
TA

You need to make a loop that does
something to each item bro

ITypemessuge._ II SEND J

Figure 6: Chat window

12

5 Usability Test

5.1 Usability Test of Low-Fidelity Prototype

According to Jacob Nielsen, Thinking Aloud Testing is considered to be the most valuable usability
engineering method because it is cheap, flexible, easy to learn, and unlike quantitative usability
studies where the slightest mistake might have misleading results, even with poorly run research we
can get insightful findings. For all the above reasons, we decided to proceed with Thinking Aloud
Testing of our Low-Fidelity Prototype using the wireframes we created last week.

In order to conduct Thinking Aloud Testing, we followed the below three steps:
e Recruit representative users
e Prepare a set of tasks
e Conduct Think Aloud test

Recruit Representative Users
We managed to recruit four users in total- three Software Design students and one Teaching Assis-
tant.

Our defined set of tasks
Using the wireframes we created last week, we decided on some tasks for our testing users.

Task 1:
Description: Using the wireframe from Figure 1, the users need to answer which is the expected
result of performing the Login and Create Account actions.

‘* {I.i::to Mlenk (bttps://studentchatapp -) @
ITU TA/Student CHAT APP

Password

LOGIN

Figure 7: Login / Signup page

Task 2:

Description: Using the wireframe from Figure 2, the users should decide which is the expected result
of checking the available courses and see which TA is available.

| AWeb Page
4 R{Ii;k fapree | hitps://studentehat.app/courses) @

Select course
@ Search for course)

Software Engineering
2 active Teaching Assistants

Technical Interaction Design
1 active Teaching Assistant

Web Archi e and fr ks
2 active Teaching Assistants l

Figure 8: Course Overview

Task 3:

Description: Using the wireframe from figure 3, the user should decide which is the expected behavior
if he selects to chat with an active or inactive user.

14

| AWeb Page

‘O 9 x {} { https://studentchat.app/courses/77/ta -' @

Select TA
Web Architecture and Framworks
John Doe
Active ﬁ
Johnny Doey

#-Click to select

_
z? g
4 E
) o
58

[}

[«

Figure 9: TA overview and availability

Task 4:
When the user selects to study with an active TA should be redirected to a page similar to Figure 4.
Which is the expected behavior when the user types a message and clicks send? What will happen
if the other person responds back?

15

ITU CHAT

<3 o x G { https:/ /studentchat app/courses/77 /ta/1) @

John Doe
&) [Wil\iom Frost
£ [Student
l Hey bro, can u help me with | m
assignment?
John Doe

TA
] Hey ye, whats up man?

[/ williem Frost
T [Student

What's answer for number 1
ion? .
queston 3-Click to select

John Doe E3 ‘
TA A

You need to make a loop that does
something to each item bro

[l

ITypemessuge._ II SEND J

Figure 10: Chat window

5.2 Conduct Think Aloud test

On Thursday, 29th of September we conducted the Think Aloud test with our users, and both
findings and feedback we received are presented below:

e #Task 1: Users guessed most of the time correctly 75% about the expected behavior of our
login/signup prototype 25% expected the redirect to ITU to authorize their account). This
means that our design at this stage ensures intuitiveness.

e #Task 2: All four users correctly expected the courses in which they are currently enrolled
to be displayed in this view. It made sense to them that available TAs and their availability
status were listed below the course name.

e #Task 3: All users correctly guessed that clicking on an online TA would redirect them to the
chat window (Figure 4). 75% of the users expected to be redirected to the TAs chat window
regardless of the availability status. The remaining 25% of the users expected the application
to disable redirection to the chat window of the offline TA and display an error message.

e #Task 4:All users expected the message to be sent and delivered and have similar behavior
to other well-known chat applications. Half of the users expected the message to the offline TA
to be sent anyway. This is not entirely correct, however. The message will not behave like a
normal instant chat message, but would instead open a new “ticket” with a status unsolved. If
some other TA then solves the problem in the meantime he/she can close the ticket and avoid
the offline TA to answer already solved issues. This is a design decision to avoid excessive
work for the TAs and ensure more efficient communication for the students. Only 25% of the
users expected this behavior. The remaining 25% expected the message not to be sent.

16

e We missed a wireframe showing the ability of a TA to set the status to either available or
unavailable. We furthermore weren’t able to provide a prototype (wireframe) of the “ticket”
section.

e The feedback overall was very good and useful. All our users agreed an instant chat application
is a nice idea that would make both lives of TAs and students easier

6 Hi-Fi Prototype

Please find below the link for our Figma: https://www.figma.com/file/nD2y00qgh8pfd6ZQus4qCz/
Group-8---Chat-Application?node-id=3}3A3

7 Data Model

Below you can find our ER Diagram:

R Y &—~|' Student ‘

@

Course

8 Technical Implementation
For the implementation we decided to use the frameworks and programming languages taught in the
Technical Interaction Design course i.e React JS, HTML, CSS for the front end and the low-code

service back4app for the back end. We did the version control and collaboration using a GitHub
repository:

https://github.itu.dk/faha/chatITU/tree/master/client (back4app)

17

https://www.figma.com/file/nD2yOOqgh8pfd6ZQus4qCz/Group-8---Chat-Application?node-id=3%3A3
https://www.figma.com/file/nD2yOOqgh8pfd6ZQus4qCz/Group-8---Chat-Application?node-id=3%3A3
https://github.itu.dk/faha/chatITU/tree/master/client(back4app)

8.1 Sprint 1

Initially, we implemented a simple navigation component in HTML and CSS and Fontawesome icons.
We then installed and set up the react-router-dom in the App.js file to make the link render the
proper components using the Link component. This worked as expected with only minimum effort.
We then started to implement the generic pages i.e home page, signup, login.

For the homepage, we used CSS flexbox to make two big ”columns”. One with a welcome message
with a button to ’get started’ and another with a GIF animation showing a chat window.

The signup page is simply made up by an HTML form with some input and a submit button.
The input captures the data with the onChange event and set the state of the const username,
password using react useState.

<label for="email">Username</label>
<input
type="text"
placeholder="email"
name="email"
onChange={(e) => setUsername(e.target.value)}
value={username}

We then use the back4app parser to create a new user in the database:

const newUser = new Parse.User();

newUser.set ("username", username);

newUser.set ("password", password);

newUser.set ("teachingAssistant", teachingAssistant);

try {
// Since the signUp method returns a Promise, we need to call it using await
const createdUser = await newUser.signUpQ);
alert(
‘Success! User ${createdUser.getUsername()} was successfully created!*

);

The login page has a similar implementation but this time we compare the user input and parse
it with the 'logIn’ function to check if a matching record was found in the database. If a match was
successfully found the user is redirected to the chat otherwise an error is thrown.

const loggedInUser = await Parse.User.logIn(usernameValue, passwordValue);

The forms are styled in a similar fashion to our Figma project. We decided however to not center
the forms and instead keep them to one side and have some graphics on the other side. Sign up form
and login are similar in design but flipped so that the login form is on the left side and the opposite
for the sign up.

Our process was straightforward as we have done similar implementations before, but we did have
to change something as we initially mistakenly utilized the CSS framework Bootstrap not knowing
this wasn’t allowed. We manage however to refactor and got a similar design with custom HTML
elements and CSS flexbox etc.

18

8.2 Sprint 2

In this sprint, we did the further setup of our back4app. In our database, we created 4 classes:
role, session, user, and chat. This is more or less aligned with our ER diagram except for the fact
we didn’t restrict chatting to 'courses’ that the user must be enrolled in beforehand. Instead, we
allowed users and TA to create new custom chats with any subject and allowed them to be either
public or for specific users added by the chat creator. This implementation was easier to do and
also provided more freedom for the users.

As explained above we create users using the signup form and look for matching records in the
login form. We didn’t do all CRUD operations at this point, but could easily be done in a later
version e.g. if we create functionality for the users to update their passwords or delete accounts.

In this sprint we started implementing a ’chat dashboard’ (see wChatSetup.js for reference)
this page/component should aid the user to create or join a new chat and give an overview of
previous/ongoing chat threads. For better usability, we've added sections indicated with different
font awesome icons. Registered users are color-coded with either red or green circles indicating the
status of the user. For each user the ”add user” button is present. Clicking it will return the message
‘user added’ with a green check mark. The status can be changed from the drop-down menu in the
navigation.

8.3 Sprint 3

In this sprint, we implemented the chat window i.e the main function of the app. Messages are
fetched from back4app using the parser (please see component wChatWindow.js for more details).
The chat window is a large div element with the css property ’overflow’ set to ’scroll’ to make all
messages visible by scrolling. We created a function ”autoScroll” that automatically scrolls down to
the most recent message whenever a new message is sent. This will make the usability of the chat
more intuitive as the user doesn’t need to scroll manually

function scrollAuto() {
setTimeout () => {
let obj = document.getElementsByClassName ("messages") [0];
obj.scrollTop = obj.scrollHeight;
}, 500);
}

We also added a key down handler enabling the user to send (submit the input value) on enter.
This is a very default behavior of most chat applications and is something most users by intuition
would expect to be possible.

useEffect () => {
const keyDownHandler = (event) => {
console.log("User pressed: ", event.key);

if (event.key === "Enter" && messagelInput !== "") {
event.preventDefault(); (...)

Each message bubble has some color coding and border-radius and padding. We have made
conditional coloring based on if the message is sent by the currently logged-in user or not. Similar
behavior to Facebook messenger the outbound messages are blue while the inbound messages are
grey. The messages have some padding and margin so they easily distinguish from one another. We

19

also enable word wrap to avoid too-long lines in horizontal overflow. Below each message, we've
added the sender and the timestamp with a smaller font size. We would have liked to enhance our
chat window with a widget showing users currently in this "room” similar to our idea in Figma.
This implementation has however been pushed to the next sprint. We also discussed options of
attachment and screen sharing as these would be convenient for especially coding support. We
agreed, however, that this was an implementation beyond the scope of the course. In this sprint,
we also did some refactoring in our routing allowing the behavior to be more conditional and show
menu items based on whether the user is logged in or not i.e hiding redundant pages like login and
sign up for logged-in users and instead displaying chat / my profile drop-down nav items.

8.4 Collaboration

We used GitHub for version control and collaboration and had several meetings at I'TU and online.
We've worked on different branches and files and succeeded with that without too many merge
conflicts. By the end of each sprint, we did online meetings reviewing and explaining the progress
we did on the code, suggestions for improvements, and other ideas. All together we think the
collaboration went well and we all believe we improved our understanding of React JS. We also agreed
that back4app is a great and intuitive tool to use for building a fast backend for any application, we
would however have been keen to become acquainted with something like MongoDB and MERN-
stack development in general.

9 Design to App

Component 1 - Login Page:
Below you can find a screenshot of the component as was designed during our Hi-Fi prototype.

GET STARTED

LOGIN
Please use your ITU Crendentials

E-mail

Password

Mol a user? Please sign up via ITU

SIGNUP

Figure 11: Login page designed in our Figma

20

The login page in our application looks like the following screenshot.

= chatITU & Login & Signup

Login

Email

‘Email ‘

Password

‘password ‘

Login
Don't have an account?

Figure 12: Login page from our application

The source code snippet to implement the Login component can be found below:

, { useState } from “react”
arse/dist/parse.mil
m “react-router-dom”;

export co
[username

[password,
[currentUser,

currentUser) ;
eturn currentUser;

¢ function () 1

await Parse._User.logOut();

t currentlUser = await Parse.User.c
(currentUser null) {
Success! No user is logged in :

Figure 13: Source code for our Login Page

Component 2 - Chat Room:
The chat window component as was designed during our HI-Fi prototype can be found below:

22

CHAT @ Martin Roder

@ Martin Roder Hi Martin. | hope you are
doing great! | would like
to ask you something

about the assignment. Do you
@ Goran Rashford know how the method is
Hi Nick! | am fing and you?

Cristian Rolan

Yes of course, you could ask
me whatever you want but
please send me the screenshots

Kate Costel from you code.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor ut
labore et dolore magna aligua.
Ut enim ad minim est laborum.

Nostrud exercitation ullameo
laboris nisi ut aliquip commodo
consequat. Duis aute irure dolor.

On reprehenderit in voluptate
velit esse cillum dolore eu
nulla pariatur. Excepteur sint
occaecat cupidatat non proi,

P @

Figure 14: Chat window designed in our Figma

The chat window was finally implemented with a different layout than the designed one but
offered the same functionality.

& chaltu @ cChat &Myprofier

DemoChat

Yooyoyeyoyoyo N

New message

Figure 15: Chat window designed in our Figma

23

Below we present a code snippet from our source code implementation of the chat window:

import React, { useState, useEffect } from “react”;
import "../App.css";

import Parse from “parse";
{ useParseQuery } from “@parse/react”;
import { useParams } from “react-router-dom"”;

{ Prin hats -fPri
import { Link } from “react-router-dom™;

(pro

attributes: {
memb
messag
chatSubjec
chatPublic: f

t [tempPublic

t params = use g
t pid = params.id.toS5tring();

useEffect(=2
document.title = ~${currentChat.attributes.chatSubject} ;

, [currentChat]);

Figure 16: chat window source code snippet

10 Final reflection

Throughout the implementation phase, we realized how important is the design phase, as well as the
gathering of requirements and needs that the end-user has, and our application should meet. Due to
the fact that the first four design steps (Empathy research, Problem Domain, Ideation Prototype,
and Usability Test) collect the requirements and specifications through the deep understanding of
the end-user and lead to our HI-Fi prototype which is in essence the mockup of our implementation,
we found out that it is very crucial to take it very seriously and dedicate time to execute those steps.
The better requirement gathering and analysis we make, will lead to better system design avoiding
redundant work, change requests, and fewer implementation changes. Hence, there will be no delay
in each sprint and the application will be deployed in a timely manner. Another learning experience
we had in our project and all of us agreed that initially, we didn’t pay a lot of attention to it, was
the Hi-Fi prototype. Fortunately, our TAs explained to us the importance of it and we tried to make
it nice and distinguish the different components that we are going to need for our implementation.
Due to time constraints, we didn’t implement all the features we were initially planning to focus
more on the mandatory ones for this assignment(Login page, chat with one user, create a group
chat, etc). Finally, even though the collaboration of the group was very good, we found it a bit
challenging the part to find a common time to meet and work altogether due to the strict schedule
of each team member.

24

	Introduction
	Empathy research
	User group and target group
	Empathy research
	Conduct empathy research
	Findings from our empathy research

	Problem Domain
	Personas
	POVs
	“How might we”

	Ideation Prototype
	Ideation
	Methods - Generation
	Methods - Selection
	Our selected ideas
	Prototyping

	Usability Test
	Usability Test of Low-Fidelity Prototype
	Conduct Think Aloud test

	Hi-Fi Prototype
	Data Model
	Technical Implementation
	Sprint 1
	Sprint 2
	Sprint 3
	Collaboration

	Design to App
	Final reflection

